你好,我是你的缓存老师陈波,欢迎进入第 3 课时“缓存的引入及架构设计”。
至此,缓存原理相关的主要知识点就讲完了,接下来会讲到如何引入缓存并进行设计架构,以及在缓存设计架构中的一些关键考量点。
在设计架构缓存时,你首先要选定缓存组件,比如要用 Local-Cache,还是 Redis、Memcached、Pika 等开源缓存组件,如果业务缓存需求比较特殊,你还要考虑是直接定制开发一个新的缓存组件,还是对开源缓存进行二次开发,来满足业务需要。
确定好缓存组件后,你还要根据业务访问的特点,进行缓存数据结构的设计。对于直接简单 KV 读写的业务,你可以将这些业务数据封装为 String、Json、Protocol Buffer 等格式,序列化成字节序列,然后直接写入缓存中。读取时,先从缓存组件获取到数据的字节序列,再进行反序列化操作即可。对于只需要存取部分字段或需要在缓存端进行计算的业务,你可以把数据设计为 Hash、Set、List、Geo 等结构,存储到支持复杂集合数据类型的缓存中,如 Redis、Pika 等。
确定了缓存组件,设计好了缓存数据结构,接下来就要设计缓存的分布。可以从 3 个维度来进行缓存分布设计。
设计完毕缓存的分布策略后,接下来就要考虑缓存的架构部署及运维管理了。架构部署主要考虑如何对缓存进行分池、分层、分 IDC,以及是否需要进行异构处理。
在缓存设计架构的过程中,有一些非常重要的考量点,如下图所示,只有分析清楚了这些考量点,才能设计架构出更佳的缓存体系。
首先是 value 的读写方式。是全部整体读写,还是只部分读写及变更?是否需要内部计算?比如,用户粉丝数,很多普通用户的粉丝有几千到几万,而大 V 的粉丝更是高达几千万甚至过亿,因此,获取粉丝列表肯定不能采用整体读写的方式,只能部分获取。另外在判断某用户是否关注了另外一个用户时,也不需要拉取该用户的全部关注列表,直接在关注列表上进行检查判断,然后返回 True/False 或 0/1 的方式更为高效。
然后是不同业务数据缓存 KV 的 size。如果单个业务的 KV size 过大,需要分拆成多个 KV 来缓存。但是,不同缓存数据的 KV size 如果差异过大,也不能缓存在一起,避免缓存效率的低下和相互影响。
key 的数量也是一个重要考虑因素。如果 key 数量不大,可以在缓存中存下全量数据,把缓存当 DB 存储来用,如果缓存读取 miss,则表明数据不存在,根本不需要再去 DB 查询。如果数据量巨大,则在缓存中尽可能只保留频繁访问的热数据,对于冷数据直接访问 DB。
另外,对缓存数据的读写峰值,如果小于 10万 级别,简单分拆到独立 Cache 池即可。而一旦数据的读写峰值超过 10万 甚至到达 100万 级的QPS,则需要对 Cache 进行分层处理,可以同时使用 Local-Cache 配合远程 cache,甚至远程缓存内部继续分层叠加分池进行处理。微博业务中,大多数核心业务的 Memcached 访问都采用的这种处理方式。
缓存的命中率对整个服务体系的性能影响甚大。对于核心高并发访问的业务,需要预留足够的容量,确保核心业务缓存维持较高的命中率。比如微博中的 Feed Vector Cache,常年的命中率高达 99.5% 以上。为了持续保持缓存的命中率,缓存体系需要持续监控,及时进行故障处理或故障转移。同时在部分缓存节点异常、命中率下降时,故障转移方案,需要考虑是采用一致性 Hash 分布的访问漂移策略,还是采用数据多层备份策略。
平均缓存穿透加载时间在某些业务场景下也很重要,对于一些缓存穿透后,加载时间特别长或者需要复杂计算的数据,而且访问量还比较大的业务数据,要配置更多容量,维持更高的命中率,从而减少穿透到 DB 的概率,来确保整个系统的访问性能。
对于缓存的可运维性考虑,则需要考虑缓存体系的集群管理,如何进行一键扩缩容,如何进行缓存组件的升级和变更,如何快速发现并定位问题,如何持续监控报警,最好有一个完善的运维平台,将各种运维工具进行集成。
对于缓存的安全性考虑,一方面可以限制来源 IP,只允许内网访问,同时对于一些关键性指令,需要增加访问权限,避免被攻击或误操作时,导致重大后果。
好了,第3课时的内容到这里就全部结束了,我们一起来做一个简单的回顾。首先,我们学习了在系统研发中,如何引入缓存,如何按照4步走对缓存进行设计架构及管理。最后,还熟悉了缓存设计架构中的考量点,这样你在缓存设计架构时对号入座即可。